The prevention and handling of the missing data
نویسنده
چکیده
Even in a well-designed and controlled study, missing data occurs in almost all research. Missing data can reduce the statistical power of a study and can produce biased estimates, leading to invalid conclusions. This manuscript reviews the problems and types of missing data, along with the techniques for handling missing data. The mechanisms by which missing data occurs are illustrated, and the methods for handling the missing data are discussed. The paper concludes with recommendations for the handling of missing data.
منابع مشابه
Investigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملمقایسه روش الگوریتم EM و روشهای متداول جانهی دادههای گمشده: مطالعهروی پرسشنامه خوددرمانی بیماران دیابتی
Background and Objectives: Missing data is a big challenge in the research. According to the type of the study and of the variables, different ways have been proposed to work with these data. This study compared five popular imputation approaches in addressing missing data in the questionnaires. Methods: In this study, 500 questionnaires were used for self-medication in diabetic patients. Mi...
متن کاملتحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند
Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 64 شماره
صفحات -
تاریخ انتشار 2013